602. The Vibration Spectra of the Cations of Methoxypyridines. By E. SPINNER and J. C. B. WHITE.

The infrared and Raman spectra of the hydrochlorides of 2-, 3-, and 4-methoxypyridine have been compared with those of the free bases and assignments have been made for the principal bands. Cation formation does not change the spectra profoundly.

THE structures of methoxypyridine cations are known in essentials. It is true that, for the 2- and the 4-isomer, the extent to which the form bearing the positive charge on the oxygen atom [e.g., (II)] contributes is uncertain; however, the major contribution must be presumed to come from the form in which the nitrogen atom is positively charged [e.g., (I)]. The methoxypyridine cations are therefore useful reference compounds for vibration spectral studies of ions such as hydroxy- 1^{-4} and amino-pyridine ⁵ cations, the structures of which are not known *a priori*.

A contrary view concerning the structure of the 4-methoxypyridinium ion, to the effect that form (II), and not (I), makes the major contribution, was expressed by Tsubomura⁶ on the basis of a (very limited) ultraviolet- and infrared-spectral study of the 4-methoxy-2,6-dimethylpyridinium ion. However, contrary to what Tsubomura implies, the ultraviolet spectrum of the 4-methoxypyridinium ion ⁷ (λ_{max} , 235 m μ , ϵ 9500) is neither strikingly different from that of 4-methoxypyridine 7 (222 mµ, ε 9300; 235 mµ, ε 2000, infl.) nor strikingly similar to that of 4-pyridone 7 (253 m μ , ϵ 14,800). The assignment of

- ¹ Sensi and Gallo, Ann. Chim. Appl., 1954, 44, 232.
- ² Spinner, J., 1960, 1226.
 ³ Spinner and White, unpublished work.

⁴ R. A. Y. Jones, Katritzky, and Lagowski, Chem. and Ind., 1960, 870; Katritzky and R. A. Y. Jones, Proc. Chem. Soc., 1960, 313.

- ⁵ Following paper.
- ⁶ Tsubomura, J. Chem. Phys., 1958, 28, 355.
- ⁷ Mason, J., 1959, 1253.

Vibration spectra α in the range 1800—650 cm.⁻¹ (Raman spectra to 200 cm.⁻¹).

2-Methoxypyridine				3-Methoxypyridine				4-Methoxypyridine						
Assign- ment ^b	Infrared		Raman		Assign- ment Infrar		ared	Raman		Assign- ment Infrared		ared	Raman	
	Neutral species				Neutral species			Neutral species						
8b	1606	0.75	1601	13	8a	1588	0.2	1588	50	8a	1597	1.6	1590	23
8a 19a CH ₃ be 19b 3? COC a-st 9a? 12 COC s-st 1	1589 1575 1484 1447 1422 1314 1292 1257 1180 1144 1119 1099 1046 1022 988 956 828	$\begin{array}{c} 0.1 \\ 0.7 \\ 1.0 \\ 0.6 \\ 0.85 \\ 0.55 \\ 0.02 \\ 0.35 \\ 0.05 \\ 0.05 \\ 0.65 \\ 0.65 \\ 0.35 \\ 0.05 \\ 0.03 \end{array}$	1570 1443 1417 1308 1256 1256 1177 1140 1095 1043 1021 988 930 826	50 19 5 66 27 5 9 7 19 33 11 100 5 5	8b 19a CH ₃ be 19b COC a-st 9a 15? 1 12 5 11 4?	$1578 \\ 1482 \\ 1465 \\ 1427$	$\begin{array}{c} 0.45\\ 0.55\\ 0.55\\ 0.1\\ 0.55\\ 0.7\\ 0.65\\ 0.55\\ 0.5\\ 0.65\\ 0.05\\ 0.1\\ 0.25\\ 0.4\\ 0.45\\ 0.1\\ 0.5\\ 0.5\\ 0.5\\ \end{array}$	1579 1460 1426 1282 1271 1233 1191 1179 1111 1051 1014 798 620	20 15 10 35 30 10 25 20 15 100 70 90 16	8b 19a CH ₃ be 19b COC a-st 9a? 12? COC s-st 1 11 5	1574 1507 {1465 1445 1423 1333 1289 1244 1215 1183 1089	$\begin{array}{c} 0.8 \\ 1.1 \\ 0.4 \\ 0.3 \\ 0.5 \\ 0.05 \\ 1.6 \\ 0.2 \\ 1.1 \\ 0.05 \\ 0.1 \\ 1.5 \\ 0.4 \\ 1.1 \\ 0.6 \\ 0.1 \end{array}$	1569 1501 1460 1441 1419 1332 1284 1240 1208 1180 1073 1051 1025 987 801	23 4 8 1 1 5 20 8 15 6 2 4 3 100 33
5 11	812	0·4 0·7	810	$\frac{56}{7}$				570	8	4?			661	19
16	781 736	0·7 0·25	781 622 602 456 231	14 12 25 11	16			515 443 256 209	$10 \\ 25 \\ 15 \\ 15 \\ 15$	16			537 442 261	$2 \\ 15 \\ 1$
2-Methoxypyridine hydrochloride				3-Methoxypyridine hydrochloride				4-Methoxypyridine hydrochloride						
										4				
Assign-	hydroo	chlorid	le		Assign-	hydroo	chloric	le		Assign-	hydro	ochlori	de	
Assign- ment	hydroo Infra	chlorid ured	le Ram		Assign- ment	hydroo Infra	chlorid red		an	Assign- ment	hydro Infr	ochlori ared	de Ran	
Assign-	hydrod Infra 1631	chlorid ured 0.8	le	ian 23	Assign-	hydroo	red	le	an 38	Assign- ment 8a	hydro Infr 1635	ochlori ared 1.0	de	ian 78
Assign- ment 8a	hydrod Infra 1631 1613 1540	chlorid ured 0.8 1.5 0.8	le Ram		Assign- ment	hydrod Infra 1620 1612	red 0·3	le Ram 1628 1561	38 8	Assign- ment 8a 8b 19b	hydro Infr 1635 1600 1529	ochlori ared 1.0 0.4 0.25	de Ran	
Assign- ment 8a 8b	hydrod Infra 1631 1613 1540 1520 1462 1384 1321 1297	hlorid 0.8 1.5 0.8 0.1 0.6 0.55 0.8 1.4	le Ram 1630 1545 1461 1326 1295	23 4 21 80 36	Assign- ment 8a 8b+19a? CH ₃ be 19b CH ₃ be 3 COC a-st	Infra 1620) 1612 1552 1461) 1444 1356 1323 1279	chlorid red 0.3 1.5 0.5 1.2 0.35 1.6	le Ram 1628 1561 1508 1464 1362 1324 1282	38 8 18 15 23 5 33	Assign- ment 8a 8b 19b 19a CH be	hydro Infr 1635 1600 1529 1512 {1459 1433 1398 {1322 1304	$\begin{array}{c} \text{pared} \\ 1\cdot 0 \\ 0\cdot 4 \\ 0\cdot 25 \\ 1\cdot 3 \\ 0\cdot 1 \\ 0\cdot 2 \\ 0\cdot 5 \\ 1\cdot 0 \\ 0\cdot 8 \end{array}$	de Ran 1640 1536 1466 1442 1403 1318	78 11 20 20 28 33
Assign- ment 8a 8b 19a 19b + CH ₃ be CH ₃ be 3?	hydrod Infra 1631 1613 1540 1520 1462 1384 1321	hlorid ured 0.8 1.5 0.8 0.1 0.6 0.55 0.8	le Ram 1630 1545 1461 1326	23 4 21 80	Assign- ment 8a 8b+19a? CH ₃ be 19b CH ₃ be 3	Infra 1620) 1612 1552 1461) 1444 1356 1323	chlorid red 0·3 1·5 0·5 1·2 0·35	le Ram 1628 1561 1508 1464 1362 1324	38 8 18 15 23 5	Assign- ment 8a 8b 19b 19a CH ₃ be	hydro Infr 1635 1600 1529 1512 {1459 1433 1398	$\begin{array}{c} \text{pchlori}\\ \text{rared}\\ 1\cdot 0\\ 0\cdot 4\\ 0\cdot 25\\ 1\cdot 3\\ 0\cdot 1\\ 0\cdot 2\\ 0\cdot 5\\ 1\cdot 0\end{array}$	de Ram 1640 1536 1466 1442 1403	78 11 20 20 28
Assign- ment 8a 8b 19a 19b + CH ₃ be CH ₃ be 3? COC a-st 9a? 12 COC s-st 1	hydrod Infra 1631 1643 1540 1520 1462 1384 1321 1297 1235	hlorid 0.8 1.5 0.8 0.1 0.6 0.55 0.8 1.4 0.5	le Ram 1630 1545 1461 1326 1295 1240	23 4 21 80 36 16	Assign- ment 8a 8b+19a? CH ₃ be 19b CH ₃ be 3 COC a-st	Infra 1620) 1612 1552 1461) 1444 1356 1323 1279 1191 1148 1109 1050	chlorid red 0.3 1.5 0.5 1.2 0.35 1.6 0.2	le Ram 1628 1561 1508 1464 1362 1324 1282 1185	38 8 18 15 23 5 33 23	Assign- ment 8a 8b 19b 19a CH ₃ be COC a-st	hydro Infr 1635 1600 1529 1459 1433 1398 {1322 1304 1259 1192 1099 1044	$\begin{array}{c} \text{pchlori}\\ \text{ared}\\ 1\cdot 0\\ 0\cdot 4\\ 0\cdot 25\\ 1\cdot 3\\ 0\cdot 1\\ 0\cdot 2\\ 0\cdot 5\\ 1\cdot 0\\ 0\cdot 8\\ 0\cdot 1\end{array}$	de Ram 1640 1536 1466 1442 1403 1318 1265	78 11 20 20 28 33 33
Assign- ment 8a 8b 19a 19b + CH ₃ be CH ₃ be 3? COC a-st 9a? 12 COC s-st	hydrod Infra 1631 1613 1540 1520 1462 1384 1321 1297 1235 1175 1102 1037 1012	hlorid ured 0.8 1.5 0.8 0.1 0.6 0.55 0.8 1.4 0.5 0.5 0.5 0.25 0.25 0.25 0.7	le Ram 1630 1545 1461 1326 1295 1240 1186 1167 1105 1046	23 4 21 80 36 16 6 11 11 56	Assignment 8a 8b+19a? CH ₃ be 19b CH ₃ be 3 COC a-st 9a 15? 1 COC s-st? 12	Infra 1620) 1612 1552 1461) 1356 1323 1279 1191 1148 1109 1050 1023 1012	ared 0.3 1.5 0.5 1.2 0.35 1.6 0.2 0.02 0.1 0.5 0.2 0.6 0.8 0.3	le Ram 1628 1561 1508 1464 1362 1324 1282 1185 1147 1116 1051 1006	38 8 18 15 23 5 33 23 9 13 100 57	Assign- ment 8a 8b 19b 19a CH _s be COC a-st 9a? 12 COC s-st	hydro Infr 1635 1600 1529 1512 {1459 {1433 1398 {1322 1304 1259 1192 1099 1044 1012 991	$\begin{array}{c} \text{ared} \\ 1\cdot 0 \\ 0\cdot 4 \\ 0\cdot 25 \\ 1\cdot 3 \\ 0\cdot 1 \\ 0\cdot 5 \\ 1\cdot 0 \\ 0\cdot 5 \\ 1\cdot 0 \\ 0\cdot 5 \\ 1\cdot 0 \\ 0\cdot 8 \\ 0\cdot 1 \\ 0\cdot 6 \\ 0\cdot 1 \\ 0\cdot 05 \\ 0\cdot 8 \\ 0\cdot 4 \end{array}$	de Ram 1640 1536 1466 1442 1403 1318 1265 1200 1102 1049 1015	78 11 20 20 28 33 33 33 8 48 40

"Wavenumbers are in cm.⁻¹; estimated band peak intensities (over and above background absorption or scatter) are in absorbance units in the infrared region, and in arbitrary units, making the strongest band equal 100, in the Raman spectra; most intense band in bold type; very weak bands omitted.

bands omitted.
b For the numbering of aromatic vibrations, see ref. 12, and for diagrams thereof, Lord *et al.*, Spectrochim. Acta, 1957, 9, 113. s-st = symmetric stretching; a-st = antisymmetric stretching; be = bending.

Infrared spectra in the range 3800—1800 cm.⁻¹.

2-		3-		4-		2-		3-		4-	
		Methoxy	pyridin	e			Metho	xypyrid	ine hydi	rochlorid	e
3045 3000	$0.05 \\ 0.1$	3015	0.15	3040	0.1	3105 3040)	0·1	3055 2900	0·55 0·1	$3070 \\ 3015$	0∙3 0•15
2942 0.2	0.2	2950	0.15	2970	0.3	3010 }	0.2	2660	1.6	2925	0.1
2860	0.2	2835	0.1	2840	0.05	$\begin{array}{c} 2750 \\ 2510 \end{array}$	$0.1 \\ 1.2$	$2040 \\ 1939$	$\begin{array}{c} 0\cdot 2 \\ 0\cdot 1 \end{array}$	$\begin{array}{c} 2795 \\ 2700 \end{array}$	$0.2 \\ 0.1$
						2000	0.15	1896	0.1	2635	0.9
						$\begin{array}{c} 1926 \\ 1867 \end{array}$	$0.25 \\ 0.2$			2025 19 3 1	$0.1 \\ 0.2$
						1784	0.2			1833	0.1
						(Chloromercuriates (strong bands)				.)
						3085	0.8	3240 3075	0·3 0·5	3250 3155 3095	0·5 0·2 0·3

a band of medium intensity at 1654 cm.⁻¹ in the infrared spectrum of 4-methoxy-2,6-dimethylpyridinium picrate to carbonyl stretching seems very dubious (in the present work on 4-methoxypyridinium chloride no infrared band was found at 1654 cm.⁻¹). Thus, neither of Tsubomura's two lines of evidence shows the cation structure to be represented better by form (II) than by form (I).

The infrared spectra of 2-methoxy-,^{8, 9} 4-methoxy-,^{9, 10} and 3-ethoxy-pyridine ¹¹ are known to be typical of 2-, 4-, and 3-substituted pyridines, respectively. The band assignments made previously⁸⁻¹¹ are only slightly modified, and extended, in the light of the Raman spectra, which have now been measured. For the hydrochlorides both the infrared and the Raman spectra are new. All these results appear in the annexed Table; the numbering of the vibrations is that used by Corrsin, Fax, and Lord.¹² The infrared spectra of the trichloromercuriates in general closely resemble those of the hydrochlorides and are not given here.

Experimental.—The neutral methoxypyridines were examined as pure liquids. The infrared spectra of the hydrochlorides and the trichloromercuriates were obtained for potassium bromide discs, and the Raman spectra of the cations for solutions of the methoxypyridines in concentrated hydrochloric acid (cation concentration, 40-45%). (No hydrolysis or other chemical change was experienced under these conditions.) The solid hydrochlorides were precipitated by means of hydrogen chloride in anhydrous ether, and the trichloromercuriates by the action of concentrated aqueous trichloromercuric acid on the pure methoxy-compound (1 mol.).

Infrared spectra were taken with a Perkin-Elmer 21 double-beam spectrophotometer fitted with a sodium chloride prism, Raman spectra (from 200-1800 cm⁻¹) with a Hilger Raman spectrograph with photoelectric recording, operated at effective slit widths of 4-6 cm.⁻¹, mercury light at 4358 Å being used as the incident radiation; the range covered was unobscured by source emission except for a weak barium line at 986 cm.⁻¹.

Discussion.—The ring-breathing vibration v_1 and the ring deformation v_{12} . The "ringbreathing "motion gives rise to the most intense Raman band below 2000 cm.⁻¹ in all the spectra except that of the 2-methoxypyridinium ion, where it is somewhat surpassed in intensity by the band near 800 cm.⁻¹. The second very strong Raman band in this region in the pyridine spectrum (at 1030 cm.⁻¹) is due ¹¹ to the deformation v_{12} ; this frequency is readily placed in all the spectra except that of neutral 4-methoxypyridine, which only shows one strong Raman band near 1000 cm.⁻¹.

The strong Raman band near 800 cm.⁻¹ This is also observed for the picolines,¹³ though

- ⁸ Katritzky and Hands, J., 1958, 2202.
 ⁹ Katritzky and Coats, J., 1959, 2062.
 ¹⁰ Katritzky and Gardener, J., 1958, 2198.
 ¹¹ Katritzky, Hands, and R. A. Jones, J., 1958, 3165.
 ¹² Corrsin, Fax, and Lord, J. Chem. Phys., 1953, 21, 1170.
 ¹³ Long Murfin Halos and Viewerster.
- ¹³ Long, Murfin, Hales, and Kynaston, Trans. Faraday Soc., 1957, 53, 1171.

The Vibration Spectra of the Cations of Methoxypyridines. 3118

not for pyridine. For reasons to be discussed ⁵ it is assigned to a hydrogen out-of-plane bending vibration, presumably v_5 .

The high-frequency skeletal stretching bands. Unlike the bands discussed above, which are almost unchanged in frequency on cation formation, the frequencies v_{8a} , v_{8b} , v_{19a} , and v_{19b} tend to be raised in the cations. v_{8a} , which is characterized by its prominence in the Raman spectrum, is located near 1630 cm.⁻¹ in the ions; in the infrared spectrum this band is very strong for the 4-methoxypyridinium ion, but a good deal weaker for the 2-isomer and quite weak for the 3-isomer. The very strong infrared band at 1613 cm.⁻¹ for the 2-isomer must be due to vibration v_{8b} , that at 1552 cm.⁻¹ for the 3-isomer to v_{8b} or v_{19a} , or, more probably, a super-position of both. The infrared band due to vibration v_{19b} is weaker, probably overlaps with the methyl-CH antisymmetric bending band, and cannot always be placed reliably in the ion spectra.

C-O-C Stretching bands. These ⁹ were identified unambiguously for the neutral methoxypyridines, and for the 4-methoxypyridinium ion, as the only appreciably strong infrared bands without counterparts in the corresponding methylthiopyridine spectrum 14, 15 above 800 cm.⁻¹. The symmetrical C-O-C stretching band of 3-methoxypyridine cannot be identified and is presumably submerged. As expected on the basis of previous experience,¹⁶ the antisymmetric stretching frequency is raised on cation formation; the symmetric stretching frequency seems to be lowered. The band due to the antisymmetric stretching vibration is surprisingly intense in the Raman spectra, especially those of the ions (and very intense in the infrared spectra).

NH⁺ Vibrations. All three hydrochlorides show very intense ⁺N⁻H stretching bands, in the range 2500-2700 cm.⁻¹. The frequency is so low because the ⁺NH group is a very powerful hydrogen-bond donor; the acceptor may be either a chloride ion or a methoxyloxygen atom in a neighbouring ion.

The trichloromercuriate anion HgCl₃⁻ is known to be a much weaker hydrogen-bond acceptor 17 than chloride, and, by virtue of its large size, it also keeps the cations far apart. Accordingly, the +N-H stretching bands in the methoxypyridinium trichloromercuriates are located in the range 3000-3200 cm.⁻¹, corresponding to only weak hydrogen-bonding.

In the range 2000–650 cm.⁻¹ the band frequencies observed for the trichloromercuriates normally agree closely $(\pm 20 \text{ cm}^{-1})$ with those found for the chlorides. However, a band at 939 cm.⁻¹ in the spectrum of the 2-methoxypyridinium chloride is strongly displaced (to 884 cm.⁻¹) in the trichloromercuriate, and is attributed to ⁺N-H out-of-plane bending. No other +N-H bands have been identified. The in-plane +N-H bending motion in a pyridinium ion is presumably strongly coupled with the Car-H in-plane bending motions. Thus the vibration v_3 , placed at 1335 cm.⁻¹ for the pyridinium ion, is regarded as an in-phase bending motion of all these hydrogen atoms.

General. Cation formation in methoxypyridines changes some of the characteristic frequencies somewhat (a little more so than it does in the case of pyridine). The relative band intensities in the infrared spectrum change considerably, but those of the main bands in the Raman spectrum far less. All three cations unmistakably exhibit the vibration spectral features expected for pyridinium ions. The comparison between the spectra of the cations of hydroxy- and methoxy-pyridines, and of substituted derivatives thereof, will be dealt with elsewhere.³

We thank Dr. R. F. Evans for bringing to our attention the usefulness of trichloromercuriates in infrared spectral studies.

DEPARTMENT OF MEDICAL CHEMISTRY, INSTITUTE OF ADVANCED STUDIES, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA. [Received, December 28th, 1961.]

¹⁴ Spinner, J., 1960, 1237.

 ¹⁵ Spinner, J., 1962, 3127.
 ¹⁶ Goldman, Lehman, and Rao, Canad. J. Chem., 1960, 38, 171.

¹⁷ Evans and Kynaston, J., 1962, 1005.